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1. INTRODUCTION

In thin paper we desceribe a method for determining [f network problems
with arbitrary additional linear constraints beyond the standard node con-
straints can be transformed into pure network problems. These 'constralaed
networks' accurately model numerous resource allocation problems with o->jectives
or restrictions that are not reflected in the node constraints of pure networks.
When (hese seemingly more general linear programming problems can be t cans-
formed, they can be solved using any specialized network algorithm. Thus,
significant computational savings can be realized over genera. purpose methods.
Our procedure determines if by a linear transformation an "extra' constraint
can be transformed into an equivalent bounded sum of variables associated
with arcs directed into or away from a single node. If this is possible
the procedure finds the linear transformation thit vields the equivalent
constraint. Finding the appropriate transiormation by our method is akin o
finding values for dual eval.iators of a basic solution to a network problet
and lends itself to efficient computer implementation [4]. Further we s!ow
how the equivalent bounded sums can be incorporated into an enlarged pure
n:twork in a manner analegous to that given by Wagner (7], Manne [2,p. 382)
and Charnes [1].

In section 2 we present the procedure for finding equivalent bounded
sums of variables. In section ] we show how these sums ~r variables can be
embodied in the node constraiits of an enlarged network. A typical example

of the constrained network is given in section 4.

2. FINDING EQUIVALENT BOUNDED SUMS OF VARIABLES

The constrained network optimization problem can be formulated mathe-

matically as follows:




N

minimize:

subject to:

(1) X = b X

] i for all icN
(J.1)€A (i,3)eA

1y~ By

(2)
(1,))eA

Pyy¥gy <d

&) Xiy 2 0 for all (1,3)¢cA

3

wheie N 1s a set of nodes or Junction points, A is a set of directed arcs
or links between nodes in N, cy; is the unit cost associated with
arc (1,1), By ¢ 0 (>0) is the supply (demand) associated with node

keN and 18, = 0.

The node conservation constraints (1) and the non-negativity restrictions
(3) constitute the standard constraints of the pure network problem. The ‘
additional constraint (2) precludes solving this problem with any existing l
, network algorithm. However, if a constraint equivalent to (2) can be found [
which in turrn may be represented 'y node conservation constraints, the problem i
can be solved using a network algorithm. The procedure we shall describe
determines if there exists a linear combination of the node constraints (1)
which when subtracted from the extra conciraint (2) yields a bounded sum of
i variables associated with arcs directed into (or away from) a single node.
Such Younded sums will bc shown to have equivalent formulations as node conservation l
- constraints in section 3. '
To find such a linear combination, we associate a multiplier wi with each
node constraint and try to determine values for these wj such that p1j = wj -, i
for every arc (i1,j)cA whose associated variable x,, does not appear in the

1)

equivalent constraint. It may be observed that if such a linear ccmbination

exists, then some linear combination can be found in which the multiplier
assoclated with any single node constraint is assigned a valte of zero. This follows
from the fact that the coefficient matrix for a network does not have ‘ull
row rank.
We shall use the following notation in describing our procedure:

Tk = {(k,j)cA} = the set of arcs in A directed away from node keN.

A 2




Hk = {(k,J) (Al = the set of arcs In A directed into iwode keN.
The procedure consists of the following three steps:

Step 1. Arbitrarily select a noce keN and make the assunption hat the
extra constraint (2) is equivalent by a linear transformation to a partial sum
of variables associated with a subset of arcs S directed /way from a single

node (directed into a single node) i.e., we assume constraint (2) i8 equivalent to

(4) ) x‘j < f where SeTy (SecHy).
(1,§)es
Step 2. Test the assumption by attempting to find values for all wj. jeN
such that p1j = wj-vi for all arcs (i,j)tA-S(i.e., try to find a linear com-

bination of the node constraints to subtract from the extra constraint yielding
the constraint (4)). An explicit procedure for making this test will be given
below.

Step 3. Apply step 1 and step 2 to every subset Tk and Hk for keN until
the test step verifies one of the following conditions:

a) the assumption is correct for some Tk or Hk'

b) the assumption has failed for all 'l’k and Hk'

c) the extra constraint is found to be redu~dant.

d) an equivalent constraint reveals that the original problem lacks a
feasible solution.

To execute gtep 2 for node qeN and set Tq' we begin by setting the
multiplier "q equal to zero. Next we assign values to those multipliers
associa.ed with nodes linked to node q by arcs in A-Tq (1.e., ignoring the
arcs in Tq). For example, if an arc (i.q)cA-Tq exists we set Wi the
mulciplier for node i linked to node q by the arc (i,q), using the equation
Py

-wq-wi (or e uivalently w, - -piq)' The equation Pij = w -w, must be

q j 1
satisfied for all arcs (i,j)cA-Tq for the assumption to be correct, and thus

3




we check to see If {t (8 satisficd for every arc linking two nodes with
assigned multipliers. If this is not the case, we pooceed to step 3. Other-
wise, we determine values for those unassigned multiplicers w, associated
with nodes linked (by an arc (i,J) in A-Tq) to any node with an assigned
multiplier using the equation wj cw - pij'

At some poirt either all multipliers have been assigned values

satisfying pU = w -w, for all (1.j)rA-Tq or the nodes vith unassigned

31

multipliers are not connected by arcs in A-Tq to nodes with assigned multiplicers.

In the first case, the differences qu—w are checked for each arc (q.j)r"l‘(l

h|
to see if they assume one or more thar. one nonzero value. If

all of the differences are equal to zero, then the extra constraint is either

redundant or the problem is infeasible (depending on the value of the right

hand side of the equivalent constraint since it has the form 0 - d - v, 8 ).

If all of the differences equal one nonzero vsulue, then the assumption
{s true and S is determip.d by reference to the arcs associated with these
nonrero values. If the differences assume more than one distinct nonzero
value, then the assumption is false and we return to step 3.

If the nodes with unassigned multipliers are not connetted to the nodes
with assigned multipliers and the deletion of the arcs in Tq has created
a disconrected network, we arbitrarily select an unassigned multiplier and
assign it a variable value 91. We then proceed as before assigning multiplier
values to those v, assoclated with nodes linked to nodes with assigned
multipliers. At some point all multipliers have been assigned a value or
another disjnint subnetwork has been found. 1iIf another disjoint subnetwork

exists, we assign some unassigned multiplier a value of €2 and proceed as

before. Ultimately, all mult’pliers will be assigned a value such that

r— ———— —— .




p”-wj-wl for all arcs (1,])'A-Tq. At tl.is point, we proceed to compute

the differences qu-wi for each arc (q.j)n'l‘q and to determine values for the

01.8' A complete mathematical description of this procedure i1s given below.

TEST PROCEDULRE

-~

l.et F be the set of indices of nodes whose multipliers have been assigned
a value. The test of the assumption in step | for q«N and set Tq is performed
as follows.

Step 2.1

Initially set m=0, wq-O. and F={q}. The variable m is used to denote the

number of disjoint subnetworks created by deleting the arcs in Tq

: Step 2.2a

If F=aN go to step 2.3. Otherwise, select an arc (1.j)cA—Tq such that

—— —

icF, jJfF and go to step 2.2b. If no such arc exists, then select an arc

(1.j)cA-Tq such that i¢F, JeF and go to step 2.2c. If no such arc exists,

then go to step 2.2d. !

Step 2.2b i

For the arc selected in 2.2a, set w 1f pkj#w -w, for keF !

= .

17PN 17"

and (k.j)cA-Tq or {f pjkfwk-wj for keF and (j,k)cA, then the assumption
is false. Proceed tc step 3. If no ruch k exists set F=Fv{j] and begin

step 2.2a again.

) Step 2.2¢

For the arc selected in 2.2a, sat wi-wj-P:lj' 1f pikf\.k-wi for keF and
(1,k)EA or if pki* WYL for keF and (k.i)cA—Tq. then the assumption is
false. Proceed to step 3. If no such k exists set F=F¥ i} and begin step

2.2a again.




Step 2.2¢
Because nodes with assigned multipliers are not linked to nodes with un-

assigned multipliers, set m = m +1. Letﬂm ve a real valued variable,

Select some kfF arbitrarily, set wk-Om, gset FaFvik! and begin step 2.2a again.

S€ep 2.3a

For all (q.j)ch compute ﬂqj- qu—uj.

Srep 2.3b

If m=0 and each n [ equals either O or some unique non-zero vval number -,
q

then the assumption that th~ extra constraint {s equivalent .> (4) is correct.

Further S has been determined (S = {(q.j)ch: n . =3}), and an equivalent

q}
8x = f. Unfty coefficients on

constraint is w

aipes gy 2 i YR

the variables x1j are obtained by multiplying both sides of the inequality

by 1/4 . (This multiplication may reverse rhe inequality. In this case,

S should be defined as S-Tq -S and f-gq -f to obtain (4).)

If m=0 and the n assumes more than one distinct nonzero value the assump

q)
tion 1{s false. Proceed to step 3. If m=0 and nan 0 for all (q.])qu

and f>0 then the original extra constraint is redundant.
Finally, checking the sign of the coefficients and the sign of the right-
hand side (in relation to the direction of the inequality) may indicate

that the original problem is infeasible.

Step 2.3c

If m > 0 it 1s necessary to compute values for each by» i=1,...,n

such that each n equals 0 or 6 before the assumption can be accepted.

3

Observe that each = can be expressed as n_ =n +: 6 where a, is

q) j J 3 i 3
a real number and 8, equals 0, +1, or -1. We define the sets Jo = {j:

]

= )} and Ji = (j: nq =a, +8 81.8

3 j j ¢ 0: for i=1,...,m.

= =a, B

Q] s 4 3

6
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i) 1If the GJ. JeJ,, assume more than one distinct nonzero value the
assumption (s talse, proceed to step 3. If the a I'JO are all

zero or J, = #, go to i below. If the ﬂ‘. }'J” assume o un bgue
nonzero value, %, go to iii below.

1i1) Since all ay, jeJ, equal zero (or Jo = @), then there are two
possibilities. First, there existr an index 1* such that —ajlﬁlf
-, /8, for any )k, j,keJ;*. If sc, setting " * = -aj/“j. yields
"qj-o and "kuO. Thus set 6-nqk and go to iii below. Second, if no
such 1" can be found then by setting 91- 'QI/BJ for some j€J; and
for all 1 every "qj 7111 equal zero. Usir. the reasoning in step
2.3a the problem is either infeasible or the constraint is redundant.

11i) Sinace at least one of the "qj 1s nonzero and equals ¢ then the value
for the unassigned O, can be found in the following manner. If 6:0,
set 8 such that GJ+BJ31 < 0 for all jeJg and °j+8301 = 0 for at least
one jcJy. If 6 > 0, set 8, such that aj+8191 2 0 for all jcJ; and
°j+8j61' 0 for at least one jeJ;. If this is not possible for some i
then the assumption is false. Proceed to step 3.

Having determinec velues for all 91. i=1,..., m every “qj is a real valued

constant. The reasoning in step 2.3b can be applied to determine the nature

of the equivalent constraint.

Theorcm: If an extra constraint is equivalent by a linear transformation to

a bounded sum of variables associated with arcs directed away from a single aode,

the stated orocedure determines an equivalent bounded sum if and only if one exists.

——— —




S i —m—" = 0 -

Proot:

We first prove that when the algorithm terminates in step .3 an

cquivalent bounded sum bhas been fdentitied.  This requires two casen.

Case 1. Assume m=0 and a value for every w, has been assigned.  In this

case the values for the w, were determined using steps 2.2b and 2.2¢.

]

The equation pij-uj-v1 is satisfied for all arcs (i.j)LA-Tq.

Thus, the only variables which appear in an equivalent coustraint are those

associated with arcs in Tq. For every arc (q.j)¢Tq.n is computed and

qJ

provided each n equals either 0 or &, a sum of variables with unity

qj

coefficients is obtained.

Case 2. Assume m > 0 and a value for every w, has been assigned. In this

]

case it was not possible to assign a constant to some w, using the equation

3

pij-wj-ui for (i.j)cA—Tq and 1c¢F or a constant to some w

for (i.j)cA-Tq and jeF. Consequently, some w

i using pij-w -w

J i

K for an arbitrary node k

in the mth disconnected subnetwork is assigned the variable value Om.
Values for the node multipliers for the other nodes in this subnetwork
connected to node k by arcs in A—Tq are then determined by the eruation
=y -w, Or . -W .
p“, k 1 pkj j 'k

values (constant or variable) that satisfy those equations only arcs in

Again once all node multipliers have been assigned

Tq can appear in the equivalent constraint. Then a value for each Oi is

determined such that "qj-o for chq - S and such that nqj = & for jeS.

These 61 must exist for the original coanstraint to be equivalent to (4).

We next prove tha. the algorithm will find the equivalent bounded sum when

it exists. Assume there exists a linear combination of the node constraints

which when subtracted from the extra constraint yields an equivalent constraint

bounding the sum of flows on arcs directed away from a single node q. We
note that the rank of the node constraint matrix is n-1 where n is the
number of nodes. By fixing one node multiplier to a particular value,
the remaining node multipliers in any linear combination are uniquely

-8-




determined by sequentially solving a system of cquations each involving only
one unknown variable. That is, when the assumption is made that SeTq, the
multiplier %q is set equal to 0, and unique multipliers are determined such

that ij-wj-wi for all (i.j)tA-Tq. Through this process, the appropriate

linear combination is identified.

The procedure for testing the assumption that Schq is analagous to that given
for testing the assumption that SCTq. The differences are that the values

for the w, are determined using the arcs (1.j)cA-Hq.

3
An obvious advantage of this procedure is that the subsets Tk and Hk

must be examined only once to discover an equivalent bounded suw of variables
associated with any subset of the arcs in Tk or Hk' Further it is not
necessary to determine a value for every node multiplier before an as-

sumption for a particular set can be rejected. That is wherever pijfv v,

]

for any arc (1,j)cA-Tq (or A-Hq) the assumption is rejected irrespective

of whether all w, have been assigned a value. If the network is not

]

connected by arcs in A-Tq. the values of = for all ijo should be

qj

checked before setting a node multiplier equal to 61. If some n is

q]

not equal either to U or & the current assumption can be rejected. If

the n for all ijo equal only 0 or & then a node in a disconnected

a3
network should be assigned a value of 61. When all nodes 1 this sub-
network have been assigned a value, the “qj for ij1 should be checked.

This allows assumptions to be rejected without first computing a constant
value for every node multiplier.

We have therefore established a procedure to determine if by a
linear transformation it is possible to find a bounded sum of variables
equivalent to a given constraint. The procedure can be applied to "less

than or equal', "greater than or equal', or equality type constraints.

9
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If the original problen 1ncludes several extra constvaints, then the procedure

can be applied to each one individually. In thic case we will require that

P4

the transformed constraints inveolve disjoint sets of variables or nested sets

of variables in a single node constraint for the problem to be reformiiaced as

an enlarged network by the procedure given in scction 3 belovw. These restrictions
parallel those given by Wagner [7] for transportation problems. Our procedure

can also be applied to constrained networks with bounded variables snd to
constrained generalized networks in which the constraint matrix of the pgeneralized
network does not have full row rank. In this case the scaling procedure ot [3;

4 must be applied first to obta.n an equivalent constrained pure network problem.

3. INOCORPORATING BOJUNDED SUMS INTO NODRE CONSTRAINTS

A procedure for extending the transportation model to include a bounded
sum of variables in a single node constraint has been given by, Wagner [7], ,
Manne [2, p. 382] and Charnes [1]. We state an analogous procedure for net- {
works to complete the reformulation of constrained networks. Let S be a set
of arcs directed into or away from a single node k. Any network with an
additional restriction of the form L x .; f can be transformed into an ;

(i,j)es -

enlarged network having two additional nodes and at most two additional arcs
by the following procedure (We use the notation defined in section 2.)

Step 1. Set N =N v {k', k''}.

——

Step 2. Set Bt = -f and set B = f

Step 3. a) If S€T, define R={ (k',3)|(k,§)eS}. For every (k',j)eR

set c Set A=AVRv{ (k,k'')} and set ¢ 0. Go to

k'i ki Kk''

step 4.

b) If SeH define R = C(1,k"") | (i, k)eSt. For every (i,k'")eR

Set A=AvRu{(k',k)} and set =(J. Go to

set Cik,,“cik. i

step 4. ;

_ __‘____._——_d




Step 4. a) 1({ the constraint is a "less than or equal type sect

A=A v (k',k'') and set ¢ 0. Go to step 5.

k'kl |=
b) If the constraint is a "greater than or equal" type set

A=A v (k'',k') and set c = 0. Go to step 5.

k' 'kl
c) If the constraint is an equality constraint go to step 5.

Step 5. Set A=A-S

The proof of this procedure follows directly from the construction and is

omitted.

4.0 APPLICATION AND EXAMPLE

Numerous models have the structure of a network problem with additional
linear constraints. These restrictions may represent secondary objectives
or restrictions that are not reflected in either the objective function or
the standard node constraints. The following example typifies this class of
problems.

Consider a network model for the distribution of a daily newspaper from
the printing plant to several surrounding communities. Suppose that the ob-
jective is to minimize the cost of making the necessary deliveries with the
additional provision that the average time for delivering a paper be no more
than 6 hours. It should be clear that without this additional restriction
a minimum cost solution might conflict with the important customer service
objective of quick delivery. In Figure 1 the unit delivery times are indicated
in the semi-circle on the corresponding arc. and the net supply or demand

figures in thousands of papers are indicated beside each node.

11
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Figure 1.

Thus for this example the total delivery time for 100,000 papers must not
exceed 600,000 hours.

Using the procedure given in section 2, we assume first that 5¢T,.

T e, — —

We set m=0, wl-O and F={1}. By step 2.2d we set m=m+l, w.,= eland P={1}u{2}.

2
Next set w,= 4#81 and F=Fu{4}, set We= 5+‘.)1 and F=Fv(5}, set w6=3+61 and

F=Fv(6)}. We set w3=1+6, but note that p36# WewW3 and the assumption. that

S<T, is rejected. We next assume that ScT,. Set m=0,w,=0 and F={2}. By |
step 2.2c we set w)=2, P=Fu{l}. Next set w,=3, F=Fu{4} and set wy=0, F=Py(3}. |

We set w6=3, F=Fv{6} and set w7=4, F=Fv{7}. Next set w5=4, F=Fu({5} and w, =7,

8

F=Fv(8}. At this point F=N and by step 2.3a we compute n26=3-3=0, 1,,=4=3=1,

24
and n,e=5-4=1. Hence the original extra constraint is equivalent to the

partial sum Xog¥X5<60.

Thus the customer service objective can only be satisfied if the total
number of papers shipped on routes (2,4) and (2,5) is less than or equal to
60,000. The network in Figure 1 can be transformed into the network in

Figure 2 with the partial sum restriction embodied in the node constraints.




3)

By~ 0

Figure 2.
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